Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.048
Filter
1.
J Transl Med ; 22(1): 433, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720361

ABSTRACT

Doxorubicin (DOX) is a broad-spectrum and highly efficient anticancer agent, but its clinical implication is limited by lethal cardiotoxicity. Growing evidences have shown that alterations in intestinal microbial composition and function, namely dysbiosis, are closely linked to the progression of DOX-induced cardiotoxicity (DIC) through regulating the gut-microbiota-heart (GMH) axis. The role of gut microbiota and its metabolites in DIC, however, is largely unelucidated. Our review will focus on the potential mechanism between gut microbiota dysbiosis and DIC, so as to provide novel insights into the pathophysiology of DIC. Furthermore, we summarize the underlying interventions of microbial-targeted therapeutics in DIC, encompassing dietary interventions, fecal microbiota transplantation (FMT), probiotics, antibiotics, and natural phytochemicals. Given the emergence of microbial investigation in DIC, finally we aim to point out a novel direction for future research and clinical intervention of DIC, which may be helpful for the DIC patients.


Subject(s)
Cardiotoxicity , Doxorubicin , Gastrointestinal Microbiome , Gastrointestinal Microbiome/drug effects , Humans , Doxorubicin/adverse effects , Cardiotoxicity/etiology , Animals , Dysbiosis , Fecal Microbiota Transplantation
2.
Chem Commun (Camb) ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712962

ABSTRACT

Caged gem-dithiols have been developed as the donors of reactive sulfur species (RSS), but the chemistry of free gem-dithiols as RSS donors has not been well understood. Herein, we report the study of a free gem-dithiol, 1,3-diphenylpropane-2,2-dithiol, as the precursor for several RSS. It releases H2S under physiological conditions and can be converted to a mono-S-nitrosothiol, which serves as a NO donor. Furthermore, it can be converted to 3,3-dibenzyldithiirane, which is an active sulfur transfer reagent and can induce S-persulfidation.

3.
Adv Sci (Weinh) ; : e2400377, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561956

ABSTRACT

Ligand-protected heterometallic nanoclusters in contrast to homo-metal counterparts show more broad applications due to the synergistic effect of hetero-metals but their controllable syntheses remain a challenge. Among heterometallic nanoclusters, monovalent Ag-Cu compounds are rarely explored due to much difference of Ag(I) and Cu(I) such as atom radius, coordination habits, and redox potential. Encouraged by copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction, comproportionation reaction of Cu(II)X2 and Cu(0) in the presence of (PhC≡CAg)n complex and molybdate generated a core-shell peanut-shaped 66-nuclear Ag(I)-Cu(I) heterometallic nanocluster, [(Mo4O16)2@Cu12Ag54(PhC≡C)50] (referred to as Ag54Cu12). The structure and composition of Ag-Cu heterometallic nanocluster are fully characterized. X-ray single crystal diffraction reveals that Ag54Cu12 has a peanut-shaped silver(I)/copper(I) heterometallic nanocage protected by fifty phenylacetylene ligands in µ3-modes and encapsulated two mutually twisted tetramolybdates. Heterometallic nanocage contains a 54-Ag-atom outer ellipsoid silver cage decorated by 12 copper inside wall. Nanosized Ag54Cu12 is a n-type narrow-band-gap semiconductor with a good photocurrent response. Preliminary experiments demonstrates that Ag54Cu12 itself and activated carbon supported Ag54Cu12/C are effective catalysts for 1,3-dipole cycloaddition between alkynes and azides at ambient conditions. The work provides not only a new synthetic route toward Ag(I)-Cu(I) nanoclusters but also an important heterometallic intermediate in CuAAC catalytic reaction.

4.
Nat Commun ; 15(1): 3177, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609361

ABSTRACT

Elemental Te is important for semiconductor applications including thermoelectric energy conversion. Introducing dopants such as As, Sb, and Bi has been proven critical for improving its thermoelectric performance. However, the remarkably low solubility of these elements in Te raises questions about the mechanism with which these dopants can improve the thermoelectric properties. Indeed, these dopants overwhelmingly form precipitates rather than dissolve in the Te lattice. To distinguish the role of doping and precipitation on the properties, we have developed a correlative method to locally determine the structure-property relationship for an individual matrix or precipitate. We reveal that the conspicuous enhancement of electrical conductivity and power factor of bulk Te stems from the dopant-induced metavalently bonded telluride precipitates. These precipitates form electrically beneficial interfaces with the Te matrix. A quantum-mechanical-derived map uncovers more candidates for advancing Te thermoelectrics. This unconventional doping scenario adds another recipe to the design options for thermoelectrics and opens interesting pathways for microstructure design.

5.
Article in English | MEDLINE | ID: mdl-38628818

ABSTRACT

Purpose: Results from studies of extended capecitabine after the standard adjuvant chemotherapy in early stage triple-negative breast cancer (TNBC) were inconsistent, and only low-dose capecitabine from the SYSUCC-001 trial improved disease-free survival (DFS). Adjustment of the conventional adjuvant chemotherapy doses affect the prognosis and may affect the efficacy of subsequent treatments. This study investigated whether the survival benefit of the SYSUCC-001 trial was affected by dose adjustment of the standard adjuvant chemotherapy or not. Patients and Methods: We reviewed the adjuvant chemotherapy regimens before the extended capecitabine in the SYSUCC-001 trial. Patients were classified into "consistent" (standard acceptable dose) and "inconsistent" (doses lower than acceptable dose) dose based on the minimum acceptable dose range in the landmark clinical trials. Cox proportional hazards model was used to investigate the impact of dose on the survival outcomes. Results: All 434 patients in SYSUCC-001 trial were enrolled in this study. Most of patients administered the anthracycline-taxane regimen accounted for 88.94%. Among patients in the "inconsistent" dose, 60.8% and 47% received lower doses of anthracycline and taxane separately. In the observation group, the "inconsistent" dose of anthracycline and taxane did not affect DFS compared with the "consistent" dose. Moreover, in the capecitabine group, the "inconsistent" anthracycline dose did not affect DFS compared with the "consistent" dose. However, patients with "consistent" taxane doses benefited significantly from extended capecitabine (P=0.014). The sufficient dose of adjuvant taxane had a positive effect of extended capecitabine (hazard ratio [HR] 2.04; 95% confidence interval [CI] 1.02 to 4.06). Conclusion: This study found the dose reduction of adjuvant taxane might negatively impact the efficacy of capecitabine. Therefore, the reduction of anthracycline dose over paclitaxel should be given priority during conventional adjuvant chemotherapy, if patients need dose reduction and plan for extended capecitabine.

6.
Org Biomol Chem ; 22(16): 3245-3248, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38567821

ABSTRACT

Visible-light-promoted hydrocarboxylation of allenes with formate salt and CO2 was developed for the first time using commercially available [Ir(ppy)2(dtbbpy)]PF6 as a photocatalyst. This strategy provides an efficient and practical method to access ß,γ-unsaturated linear carboxylic acids in moderate yields with complete regioselectivity.

7.
Eur Spine J ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38676728

ABSTRACT

PURPOSE: This study aimed to investigate the association between unilateral high-riding vertebral artery (HRVA) and morphological changes in the atlantoaxial joint (AAJ) and to determine whether unilateral HRVA is a risk factor for atlantoaxial osteoarthritis (AAOA). METHODS: We conducted a retrospective analysis of 2496 patients admitted to our medical center between January 2020 and December 2022 who underwent CT imaging of the cervical spine. Two hundred and seventy-two patients with unilateral HRVA (HRVA group) were identified and a respective 2:1 age- and sex-matched control group without HRVA was built. Morphological parameters, including C2 lateral mass settlement (C2 LMS), C1/2 coronal inclination (C1/2 CI), lateral atlanto-dental interval (LADI), and C1/2 relative rotation angle (C1/2 RRA) were measured. The degree of AAOA was recorded. Risk factors associated with AAOA were identified using univariate and multivariable logistic regression analyses. RESULTS: The study included 61.4% women, and the overall average age of the study population was 48.7 years. The morphological parameters (C2 LMS, C1/2 CI, and LADI) in AAJ were asymmetric between the HRVA and the non-HRVA sides in the HRVA group (p < 0.001). These differences in parameters (d-C2 LMS, d-C1/2 CI, and d-LADI) between the HRVA and the non-HRVA sides, and C1/2 RRA were significantly larger than those in the control group. Eighty-three of 816 patients (10.2%) with AAOA had larger values of d-C2 LMS, d-C1/2 CI, d-LADI, and C1/2 RRA compared with the patients without AAOA (p < 0.05). The multivariable logistic regression analysis indicated that unilateral HRVA [adjusted odds ratio (OR) = 2.6, 95% CI: 1.1-6.3, p = 0.029], age in the sixth decade or older (adjusted OR = 30.2, 95% CI: 16.1-56.9, p < 0.001), women (adjusted OR = 2.1, 95% CI: 1.0-5.6, P = 0.034) were independent risk factors for AAOA. CONCLUSION: Unilateral HRVA was associated with asymmetric morphological changes of nonuniform settlement of C2 lateral mass, lateral slip of atlas, and atlantoaxial rotation displacement. Besides age ≥ 60 years and females, unilateral HRVA is an independent risk factor for AAOA.

8.
Curr Med Sci ; 44(2): 298-308, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619682

ABSTRACT

OBJECTIVE: In B-cell acute lymphoblastic leukemia (B-ALL), current intensive chemotherapies for adult patients fail to achieve durable responses in more than 50% of cases, underscoring the urgent need for new therapeutic regimens for this patient population. The present study aimed to determine whether HZX-02-059, a novel dual-target inhibitor targeting both phosphatidylinositol-3-phosphate 5-kinase (PIKfyve) and tubulin, is lethal to B-ALL cells and is a potential therapeutic for B-ALL patients. METHODS: Cell proliferation, vacuolization, apoptosis, cell cycle, and in-vivo tumor growth were evaluated. In addition, Genome-wide RNA-sequencing studies were conducted to elucidate the mechanisms of action underlying the anti-leukemia activity of HZX-02-059 in B-ALL. RESULTS: HZX-02-059 was found to inhibit cell proliferation, induce vacuolization, promote apoptosis, block the cell cycle, and reduce in-vivo tumor growth. Downregulation of the p53 pathway and suppression of the phosphoinositide 3-kinase (PI3K)/AKT pathway and the downstream transcription factors c-Myc and NF-κB were responsible for these observations. CONCLUSION: Overall, these findings suggest that HZX-02-059 is a promising agent for the treatment of B-ALL patients resistant to conventional therapies.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Tubulin , Humans , Cell Proliferation , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Tubulin/metabolism , Tubulin Modulators/pharmacology , Tubulin Modulators/therapeutic use
9.
Zhen Ci Yan Jiu ; 49(4): 376-383, 2024 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-38649205

ABSTRACT

OBJECTIVES: To observe the effects of moxibustion on blood lipid metabolism, pathological morphology of thoracic aorta, and the expression of silent information regulator 1 (SIRT1) and forkhead box transcription factor O3a (FOXO3a) in ApoE-/- atherosclerosis (AS) mice, so as to explore the potential mechanism of moxibustion in preventing and treating AS. METHODS: Ten C57BL/6J mice were fed a normal diet as the control group, and 30 ApoE-/- mice were fed a high-fat diet to establish the AS model, which were randomly divided into the model group, simvastatin group, and moxibustion group, with 10 mice in each group. From the first day of modeling, mice in the moxibustion group received mild moxibustion treatment at "Shenque"(CV8), "Yinlingquan"(SP9), bilateral "Neiguan"(PC6) and "Xuehai"(SP10) for 30 min per time;the mice in the simvastatin group were given simvastatin orally (2.5 mg·kg-1·d-1), with both treatments given once daily, 5 times a week, with a total intervention period of 12 weeks. The body weight and general condition of the mice were observed and recorded during the intervention period. After the intervention, the contents of serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were measured using an automated biochemistry analyzer. Hematoxylin eosin (HE) staining was used to observe the pathological morphology of the thoracic aorta. ELISA was used to measure the contents of serum oxidized low-density lipoprotein (ox-LDL) and superoxide dismutase (SOD) activity. Western blot and real-time fluorescent quantitative PCR analysis were used to detect the expression levels of SIRT1 and FOXO3a protein and mRNA in the thoracic aorta. RESULTS: Compared with the control group, body weight at the 8th and 12th week, serum TC, TG, LDL-C, and ox-LDL contents of the model group mice were significantly increased(P<0.05, P<0.01), while the HDL-C contents, SOD activity, and the expression levels of SIRT1 protein and mRNA in the thoracic aorta were significantly decreased(P<0.05, P<0.01). HE staining showed thickening of the aortic intima, endothelial cell degeneration, swelling, and shedding. Compared with the model group, body weight at the 8th and 12th week, serum TC, TG, LDL-C, and ox-LDL contents of mice in the simvastatin group and moxibustion group were significantly decreased(P<0.01), while the serum SOD activity, expression levels of SIRT1 protein and mRNA in the thoracic aorta were significantly increased(P<0.01). The HDL-C contents were significantly increased in the simvastatin group(P<0.05). The thoracic aortic structure was more intact in both groups, with a more regular lumen and orderly arrangement of the elastic membrane in the media, and a slight amount of endothelial cell degeneration and swelling in the intima. There was no significant difference in the evaluated indexes between the moxibustion group and the simvastatin group and the pathological changes in the thoracic aorta were similar between the two groups. CONCLUSIONS: Moxibustion can reduce the body weight of AS model mice, regulate lipid levels, repair vascular intima, and alleviate endothelial damage. Its mechanism of action may be related to the regulation of the SIRT1/FOXO3a signaling pathway to improve oxidative damage.


Subject(s)
Apolipoproteins E , Atherosclerosis , Forkhead Box Protein O3 , Moxibustion , Sirtuin 1 , Animals , Humans , Male , Mice , Acupuncture Points , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/therapy , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction , Sirtuin 1/metabolism , Sirtuin 1/genetics , Triglycerides/blood , Triglycerides/metabolism
10.
Int Immunopharmacol ; 132: 111932, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38560961

ABSTRACT

Uric acid is a product of purine degradation, and uric acid may have multiple physiologic roles, including the beneficial effects as an antioxidant and neuroprotector, maintenance of blood pressure during low salt ingestion, and modulation of immunity. However, overproduction of metabolic uric acid, and/or imbalance of renal uric acid secretion and reabsorption, and/or underexcretion of extrarenal uric acid, e.g. gut, will contribute to hyperuricemia, which is a common metabolic disease. Long-lasting hyperuricemia can induce the formation and deposition of monosodium urate (MSU) crystals within the joints and periarticular structures. MSU crystals further induce an acute, intensely painful, and sterile inflammation conditions named as gout by NLRP3 inflammasome-mediated cleavage of pro-IL-1ß to bioactive IL-1ß. Moreover, hyperuricemia and gout are associated with multiple cardiovascular and renal disorders, e.g., hypertension, myocardial infarction, stroke, obesity, hyperlipidemia, type 2 diabetes mellitus and chronic kidney disease. Although great efforts have been made by scientists of modern medicine, however, modern therapeutic strategies with a single target are difficult to exert long-term positive effects, and even some of these agents have severe adverse effects. The Chinese have used the ancient classic prescriptions of traditional Chinese medicine (TCM) to treat metabolic diseases, including gout, by multiple targets, for more than 2200 years. In this review, we discuss the current understanding of urate homeostasis, the pathogenesis of hyperuricemia and gout, and both modern medicine and TCM strategies for this commonly metabolic disorder. We hope these will provide the good references for treating hyperuricemia and gout.


Subject(s)
Gout , Homeostasis , Hyperuricemia , Signal Transduction , Uric Acid , Humans , Gout/metabolism , Gout/drug therapy , Uric Acid/metabolism , Animals , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
11.
Exp Ther Med ; 27(4): 173, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38476895

ABSTRACT

The dose-dependent pharmacological response to dapagliflozin in patients with type 2 diabetes mellitus (T2DM) with regard to weight loss remain unknown. The aim of the present study was to investigate the effects of dapagliflozin on weight loss in patients with T2DM. A total of 8,545 patients with T2DM from 24 randomized controlled trials reported in the literature were selected for inclusion in the study. Data from these trials were analyzed using maximal effect (Emax) models with nonlinear mixed effects modeling; the evaluation index was the body weight change rate from baseline values. Patients treated with 2.5 mg/day dapagliflozin exhibited an Emax of -3.04%, and the time taken for therapy to reach half of the Emax (ET50) was estimated to be 30.8 weeks for patients treated with this dose. Patients treated with 5, 10 and 20 mg/day dapagliflozin exhibited Emax values of -6.57, -4.12 and -3.23%, respectively, and their ET50 values were estimated to be 27.3, 20.4 and 4.23 weeks, respectively. The data indicated ideal linear relationships between individual predictions and observations, suggesting the optimal fitting of the final models. The present study is the first systematic analysis of the effect of dapagliflozin on weight loss in patients with T2DM. The application of dapagliflozin at 5 mg/day exhibited a greater weight loss effect compared with the other doses used, and the weight loss onset time shortened as the dose of dapagliflozin increased.

13.
Front Immunol ; 15: 1264856, 2024.
Article in English | MEDLINE | ID: mdl-38455049

ABSTRACT

Background: Increasing evidence indicating that coronavirus disease 2019 (COVID-19) increased the incidence and related risks of pericarditis and whether COVID-19 vaccine is related to pericarditis has triggered research and discussion. However, mechanisms behind the link between COVID-19 and pericarditis are still unknown. The objective of this study was to further elucidate the molecular mechanisms of COVID-19 with pericarditis at the gene level using bioinformatics analysis. Methods: Genes associated with COVID-19 and pericarditis were collected from databases using limited screening criteria and intersected to identify the common genes of COVID-19 and pericarditis. Subsequently, gene ontology, pathway enrichment, protein-protein interaction, and immune infiltration analyses were conducted. Finally, TF-gene, gene-miRNA, gene-disease, protein-chemical, and protein-drug interaction networks were constructed based on hub gene identification. Results: A total of 313 common genes were selected, and enrichment analyses were performed to determine their biological functions and signaling pathways. Eight hub genes (IL-1ß, CD8A, IL-10, CD4, IL-6, TLR4, CCL2, and PTPRC) were identified using the protein-protein interaction network, and immune infiltration analysis was then carried out to examine the functional relationship between the eight hub genes and immune cells as well as changes in immune cells in disease. Transcription factors, miRNAs, diseases, chemicals, and drugs with high correlation with hub genes were predicted using bioinformatics analysis. Conclusions: This study revealed a common gene interaction network between COVID-19 and pericarditis. The screened functional pathways, hub genes, potential compounds, and drugs provided new insights for further research on COVID-19 associated with pericarditis.


Subject(s)
COVID-19 , Pericarditis , Humans , COVID-19 Vaccines , COVID-19/genetics , Computational Biology , Systems Biology , Pericarditis/genetics
14.
Nat Commun ; 15(1): 2453, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38503758

ABSTRACT

Reactive sulfane sulfur species such as persulfides (RSSH) and H2S2 are important redox regulators and closely linked to H2S signaling. However, the study of these species is still challenging due to their instability, high reactivity, and the lack of suitable donors to produce them. Herein we report a unique compound, 2H-thiopyran-2-thione sulfine (TTS), which can specifically convert H2S to HSOH, and then to H2S2 in the presence of excess H2S. Meanwhile, the reaction product 2H-thiopyran-2-thione (TT) can be oxidized to reform TTS by biological oxidants. The reaction mechanism of TTS is studied experimentally and computationally. TTS can be conjugated to proteins to achieve specific delivery, and the combination of TTS and H2S leads to highly efficient protein persulfidation. When TTS is applied in conjunction with established H2S donors, the corresponding donors of H2S2 (or its equivalents) are obtained. Cell-based studies reveal that TTS can effectively increase intracellular sulfane sulfur levels and compensate for certain aspects of sulfide:quinone oxidoreductase (SQR) deficiency. These properties make TTS a conceptually new strategy for the design of donors of reactive sulfane sulfur species.


Subject(s)
Hydrogen Sulfide , Pyrans , Sulfhydryl Compounds , Hydrogen Sulfide/metabolism , Thiones , Sulfides/metabolism , Sulfur/metabolism , Oxidation-Reduction , Proteins/metabolism
15.
Front Immunol ; 15: 1330021, 2024.
Article in English | MEDLINE | ID: mdl-38433840

ABSTRACT

The prevalence rate of acute respiratory distress syndrome (ARDS) is estimated at approximately 10% in critically ill patients worldwide, with the mortality rate ranging from 17% to 39%. Currently, ARDS mortality is usually higher in patients with COVID-19, giving another challenge for ARDS treatment. However, the treatment efficacy for ARDS is far from satisfactory. The relationship between the gut microbiota and ARDS has been substantiated by relevant scientific studies. ARDS not only changes the distribution of gut microbiota, but also influences intestinal mucosal barrier through the alteration of gut microbiota. The modulation of gut microbiota can impact the onset and progression of ARDS by triggering dysfunctions in inflammatory response and immune cells, oxidative stress, cell apoptosis, autophagy, pyroptosis, and ferroptosis mechanisms. Meanwhile, ARDS may also influence the distribution of metabolic products of gut microbiota. In this review, we focus on the impact of ARDS on gut microbiota and how the alteration of gut microbiota further influences the immune function, cellular functions and related signaling pathways during ARDS. The roles of gut microbiota-derived metabolites in the development and occurrence of ARDS are also discussed.


Subject(s)
Gastrointestinal Microbiome , Respiratory Distress Syndrome , Humans , Oxidative Stress , Apoptosis , Autophagy
16.
J Inflamm Res ; 17: 669-685, 2024.
Article in English | MEDLINE | ID: mdl-38328563

ABSTRACT

Purpose: Doxorubicin-induced cardiotoxicity (DIC) is a severe side reaction in cancer chemotherapy that greatly impacts the well-being of cancer patients. Currently, there is still an insufficiency of effective and reliable biomarkers in the field of clinical practice for the early detection of DIC. This study aimed to determine and validate the potential diagnostic and predictive values of critical signatures in DIC. Methods: We obtained high-throughput sequencing data from the GEO database and performed data analysis and visualization using R software, GO, KEGG and Cytoscape. Machine learning methods and weighted gene coexpression network (WGCNA) were used to identify key genes for diagnostic model construction. Receiver operating characteristic (ROC) analysis and a nomogram were used to assess their diagnostic values. A multiregulatory network was built to reveal the possible regulatory relationships of critical signatures. Cell-type identification by estimating relative subsets of RNA transcript (CIBERSORT) analysis was used to investigate differential immune cell infiltration. Additionally, a cell and animal model were constructed to investigate the relationship between the identified genes and DIC. Results: Among the 3713 differentially expressed genes, three key genes (CSGALNACT1, ZNF296 and FANCB) were identified. A nomogram and ROC curves based on three key genes showed excellent diagnostic predictive performance. The regulatory network analysis showed that the TFs CREB1, EP300, FLI1, FOXA1, MAX, and MAZ modulated three key genes. An analysis of immune cell infiltration indicated that many immune cells (activated NK cells, M0 macrophages, activated dendritic cells and neutrophils) might be related to the progression of DIC. Furthermore, there may be various degrees of correlation between the three critical signatures and immune cells. RT‒qPCR demonstrated that the mRNA expression of CSGALNACT1 and ZNF296 was significantly upregulated, while FANCB was significantly downregulated in DOX-treated cardiomyocytes in vitro and in vivo. Conclusion: Our study suggested that the differential expression of CSGALNACT1, ZNF296 and FANCB is associated with cardiotoxicity and is also involved in immune cell infiltration in DIC. They might be potential biomarkers for the early occurrence of DIC.

17.
Article in English | MEDLINE | ID: mdl-38305398

ABSTRACT

AIM: To analyze the sequencing results of circular RNAs (circRNAs) in cardiomyocytes between the doxorubicin (DOX)-injured group and exosomes treatment group. Moreover, to offer potential circRNAs possibly secreted by exosomes mediating the therapeutic effect on DOXinduced cardiotoxicity for further study. MATERIALS & METHODS: The DOX-injured group (DOX group) of cardiomyocytes was treated with DOX, while an exosomes-treated group of injured cardiomyocytes were cocultured with bone marrow mesenchymal stem cells (BMSC)-derived exosomes (BEC group). The high-throughput sequencing of circRNAs was conducted after the extraction of RNA from cardiomyocytes. The differential expression of circRNA was analyzed after identifying the number, expression, and conservative of circRNAs. Then, the target genes of differentially expressed circRNAs were predicted based on the targetscan and Miranda database. Next, the GO and KEGG enrichment analyses of target genes of circRNAs were performed. The crucial signaling pathways participating in the therapeutic process were identified. Finally, a real-time quantitative polymerase chain reaction experiment was conducted to verify the results obtained by sequencing. RESULTS: Thirty-two circRNAs are differentially expressed between the two groups, of which twenty-three circRNAs were elevated in the exosomes-treated group (BEC group). The GO analysis shows that target genes of differentially expressed circRNAs are mainly enriched in the intracellular signalactivity, regulation of nucleic acid-templated transcription, Golgi-related activity, and GTPase activator activity. The KEGG analysis displays that they were involved in the autophagy biological process and NOD-like receptor signaling pathway. The verification experiment suggested that mmu_circ_0000425 (ID: 116324210) was both decreased in the DOX group and elevated in BEC group, which was consistent with the result of sequencing. CONCLUSION: mmu_circ_0000425 in exosomes derived from bone marrow mesenchymal stem cells (BMSC) may have a therapeutic role in alleviating doxorubicin-induced cardiotoxicity (DIC).

18.
Diabetol Metab Syndr ; 16(1): 46, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365853

ABSTRACT

AIMS: To estimate the effects of the sodium-glucose cotransporter 2 inhibitor (SGLT2i) on proteinuria and oxidative stress expression in type 2 diabetes patients. MATERIALS AND METHODS: 68 patients with type 2 diabetes mellitus (T2DM) were divided into three groups according urinary albumin-to-creatinine ratio (UACR), including T2DM with non-albuminuria group (UACR < 30 mg/g), T2DM with microalbuminuria group (30 ≤ UACR ≤ 300 mg/g), T2DM with macroalbuminuria group (UACR>300 mg/g). They all received SGLT2 inhibitors (SGLT2i) treatment for 12 weeks. The expression of advanced glycation end products (AGEs) in plasma and 8-hydroxy-2-deoxyguanosine (8-OHdG) in urine were measured as indications of oxidative stress. The 24-hour urine samples were collected to measure the concentration of proteinuria and 8-OHdG before and after 12 weeks SGLT2i treatment. Plasma renin activity (PRA), angiotensin II (Ang II) and Aldosterone (ALD) were measured to evaluate renin angiotensin aldosterone system (RASS) levels. RESULTS: After 12 weeks SGLT2 inhibitors treatment, the median values of 24-hour proteinuria decreased in macroalbuminuria compared to baseline (970 vs. 821 mg/d, P = 0.006). The median values of AGEs and 8-OHdG decreased in microalbuminuria and macroalbuminuria groups when compared to baseline, AGEs (777 vs. 136 ug/ml, P = 0.003) and (755 vs. 210 ug/ml, P = 0.001), 8-OHdG (8.00 vs. 1.88 ng/ml, P = 0.001) and (11.18 vs. 1.90 ng/ml, P < 0.001), respectively. Partial correlations showed that 8-OHdG were relevant to the baseline 24-h proteinuria (r = 0.389, p = 0.001), the reduction of OHdG (Δ8-OHdG) were positively correlated with the decrease of 24-h proteinuria (Δ24-h proteinuria) after 12 weeks of SGLT2i treatment (r = 0.283, P = 0.031). There was no significant correlation between 24-h proteinuria and AGEs in baseline (r = -0.059, p = 0.640) as well as between ΔAGEs and Δ24-h proteinuria (r = 0.022, p = 0.872) after12 weeks of SGLT2i treatment in T2DM patients. CONCLUSIONS: SGLT2i may reduce proteinuria in diabetic nephropathy patients, potentially by inhibiting renal oxidative stress, but not through the AGEs pathway and does not induce RAAS activation. TRIAL REGISTRATION: This clinical trial was registered on 15/10/2019, in ClinicalTrials.gov, and the registry number is NCT04127084.

19.
Redox Biol ; 70: 103045, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38245971

ABSTRACT

Polysulfides have received increased interest in redox biology due to their role as the precursors of H2S and persulfides. However, the compounds that are suitable for biological investigations are limited to cysteine- and glutathione-derived polysulfides. In this work, we report the preparation and evaluation of a novel polysulfide derived from thioglucose, which represents the first carbohydrate-based polysulfide. This compound, thioglucose tetrasulfide (TGS4), showed excellent stability and water solubility. H2S and persulfide production from TGS4, as well as its associated antioxidative property were also demonstrated. Additionally, TGS4 was demonstrated to significantly induce cellular sulfane sulfur level increase, in particular for the formation of hydropersulfides/trisulfides. These results suggest that TGS4 is a useful tool for polysulfide research.


Subject(s)
Hydrogen Sulfide , Sulfides/pharmacology , Antioxidants , Oxidation-Reduction , Glutathione/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...